What is better, Astral projection or Lucid dreaming? | Mystic Banana - New Age Spirituality Magazine
domingo, 27 de noviembre de 2011
What is better, Astral projection or Lucid dreaming?
What is better, Astral projection or Lucid dreaming? | Mystic Banana - New Age Spirituality Magazine
¿Qué pasará cuando los sacrificios no acaben con la crisis?
http://portal.ajintem.com/noticias-internacionales/opinion/65806--ignacio-ramonet-qique-pasara-cuando-los-sacrificios-no-acaben-con-la-crisisq.html
Ignacio Ramonet, Director de la edición española de 'Le Monde Diplomatique'. Alerta del "golpe de estado financiero" que vive Europa.
La mundialización financiera ha creado su propio Estado. Un poder sin sociedad. Este rol es ejercido por los mercados (...). Las sociedades realmente existentes son sociedades sin poder. Y todo esto no deja de agravarse". Este texto tiene 14 años. En diciembre de 1997, Le Monde Diplomatiquepublicaba el editoral del director de su versión en español, Ignacio Ramonet, Desarmad los mercados financieros. Una alerta que sería germen del movimiento Attac, hoy presente en 40 países, que lucha por la creación de una tasa a las transac-ciones financieras mundiales (inspirada en la Tasa Tobin) para ir echando "granos de arena" en el engranaje de la especulación.
14 años después, dos países del Viejo Continente han visto cómo sus gobiernos elegidos en las urnas eran sustituidos por unos gestores de quiebras mientras el resto atribuye al mercado decisiones y recortes. Podría decirse que Ramonet, que participó esta semana en el ForoBurgos organizado por Banca Cívica, acertó.
¿Se cae Europa?
Es un momento extremadamente delicado. Da la sensación de que no hay a la cabeza una generación política a la altura de la crisis apocalíptica que estamos viviendo. Y no nos hemos sorprendido lo suficiente de que, en los últimos meses, Alemania y Francia hayan asumido un poder que nadie les ha dado. Hemos leído: Rajoy habla con Merkel'. ¿Lo primero que hace el vencedor de unas elecciones con un resultado abrumador es llamar al jefe? No estamos en un Estado federal. España no es Dakota ni Berlín, Washington. Pero manda Merkel con Sarkozy de coartada.
Hay quien dice que Merkel asume el liderazgo porque no hay otro poder fuerte.
Si Merkel es quien está pilotando la crisis, el resultado es muy malo. Grecia va cada vez peor. Su PIB es el 3% de la zona del euro. Cuando estalló la crisis, se podía haber solucionado con un pequeño esfuerzo económico. Ahora, la gangrena ha subido. Austria y Francia tienen triple A (máxima calificación en su deuda) y las atacan. No se sabe si el euro será capaz de resistir. A Portugal se le ha impuesto una cura de caballo, se le ha impuesto la recesión y como resultado, le acaban de volver a bajar el rating. Esto no funciona.
¿Tampoco para Alemania?
Los alemanes se van a despertar dentro de poco constatando que la mayoría de los países europeos no compran. Y que ellos no exportan.
¿Por qué no lo ven?
No están a la altura. Están aplicando recortes de manual a situaciones que no se corresponden. Están alentando a los mercados a seguir ejerciendo presión. Los mercados están desbocados porque durante años ha habido una desregulación que les dejó hacer lo que querían. Los políticos prometieron cambiarla en el G-20. Sarkozy prometió la tasa a las transacciones. Pero los mercados no quieren y no se adopta.
¿A qué nos enfrentamos?
Si seguimos así, la primera amenaza es que no estamos seguros de que el euro vaya a resistir. Nadie puede afirmar que seguirá siendo lo que es dentro de tres meses o de un año. Mucha gente apuesta por que desaparecerá o quedará restringido al área de influencia de Alemania.
¿Europa se ha convertido en la primera ficha de un nuevo dominó?
La crisis de la deuda europea puede tener incidencia a escala global. Muchos se han olvidado, entre ellos Alemania, de que la globalización es la articulación de todos los mercados. Si la zona euro entra en congelación por la austeridad, no se potenciará el consumo. Ya hay en Europa 23 millones de desempleados cinco millones en España y 80 millones de pobres, personas que no consumen. El mundo funciona con dos motores, dos grandes centros de consumo: EEUU y la Unión Europea, ambos amenazados por la recesión. Si se paran, China va a fabricar menos. De hecho, el ritmo de crecimiento chino ya ha bajado. Si China deja de importar, dejará de comprar también materias primas, los minerales que compra a Perú y Chile y los productos agrícolas que compra a Brasil y Argentina. Esos países dejarán de crecer. Y en 2013 o 2014 podemos encontrarnos con una recesión internacional.
¿Puede el mundo soportarlo?
La pregunta es, si la recesión se prolonga en Europa, hasta dónde soportarán las sociedades europeas la purga a la que se está sometiendo a la población. Cuánto va a crecer la extrema derecha, cuánto la protesta social. La historia no se detiene y esto es un golpe de Estado financiero. Los mercados han decidido tomar el poder. En Grecia e Italia, la evidencia es total. Se han colocado personas que han trabajado de uno u otro modo con Goldman Sachs, especialista en colocar a su gente en puestos de poder, pero ahora al frente de países.
¿Qué se puede hacer?
La sociedad debe reflexionar para seguir defendiendo que otras soluciones son posibles. Hay que volver a planteamientos keynesianos (estimular el crecimiento económico inyectando dinero público). No lo digo yo. Lo dicen (Paul) Krugman y (Joseph) Stiglitz. Hay que hacer políticas anticíclicas, encontrar soluciones para salir de la situación. Veo difícil que se adopten en el contexto actual pero, si los gobiernos no se deciden, vamos a la catástrofe. Quizás si Francia pierde la triple A, Alemania verá que se hunde la última barrera que los protege. Los eurobonos podrían ser una solución a la crisis de la deuda, pero por otro lado habría que prohibir los hedge funds (fondos de alto riesgo), implantar la tasa a las transacciones, no operar con bancos que utilicen paraísos fiscales. Quién lo va a hacer si no hay autoridad. El euro es la única moneda que no está respaldada por una autoridad política, no tiene Gobierno y los mercados se han dado cuenta, han visto que se podían enriquecer fácilmente.
¿Por qué arrasa la derecha en Europa si trae recortes aún mayores que los que se han visto?
Es posible que una parte de la sociedad, teniendo en cuenta que muchos medios de comunicación dominantes insisten en que la línea de la ortodoxia es la única, acepten la idea de los recortes. El pánico a que el euro desaparezca genera mucha disciplina. Se ha visto en Catalunya en estas elecciones. Una parte del electorado piensa que es o recortes o caos, y votan recortes. El problema es qué pasará cuando no pase nada. Cuando los sacrificios no hayan puesto fin a la situación de crisis. Esa es la preocu-pación.
¿Piden realmente los mercados ajustes y reformas, teniendo en cuenta que no funcionan?
Los mercados no saben lo que quieren. No hay un objetivo concreto. Buscan ganar dinero. Pero es posible que la especulación acabe por destruir el sistema.
sábado, 26 de noviembre de 2011
jueves, 24 de noviembre de 2011
Autopoiesis and sonic immersion: modeling sound-based player relationships as a selforganizing system
http://ubir.bolton.ac.uk/index.php?action=fileDownload&resourceId=233&hash=b9350b55ce06041b1e2dbe97fbe2351806440daa&filename=gcct_conferencepr-1.pdf
Another related article (abstract)
The Acoustic Ecology of the First-Person Shooter
miércoles, 23 de noviembre de 2011
Isaac Asimov anticipating Internet Youtube
¿Votan los Animales? Ecología del Consenso
¡Qué Carajo! ¡Los Búfalos se tumban a la Bartola y en consenso (las hembras adultas, mayormente) eligen así, para qué dirección va a dirigirse la manada! :)))
sábado, 19 de noviembre de 2011
Desgaste Microscopico Dientes Homínidos Atapuerca
viernes, 18 de noviembre de 2011
Hermenéutica Diatópica o Diálogo Transcultural
http://raimon-panikkar.org/spagnolo/gloss-hermeneutica.html
Hermenéutica diatópica
“Yo la llamo la hermenéutica diatópica, en cuanto que la distancia a superar no es meramente temporal, dentro de una única y amplia tradición, sinó que és la distancia que existe entre los tópoi humanos, “lugares” de comprensión y autocomprensión, entre dos (o más) culturas que no han elaborado sus modelos de inteligibilitat... La hermenéutica diatópica parte de la consideración temática de que es necesario comprender al otro sin presuponer que éste tenga nuestro mismo autoconocimiento y conocimiento de base. Aquí está en juego el último horizonte humano y no solamente contextos diferentes entre sí” (Mito, fe y hermenéutica,Barcelona 2007).
La hermenéutica diatópica es una hermenéutica que va más allá de la tradicional hermenéutica morfológica y la hermenéutica diacrónica, en cuanto que “toma como punto de partida la conciencia de que los tópoi, lugares de distintas culturas, no pueden entenderse con los instrumentos de comprensión de una sola tradición o cultura” (“Autobiografía intelectual”). La hermenéutica morfológica descifra los tesoros (morphé,formas o valores) de una cultura particular, una sola tradición, y ladiacrónica representa la mediación entre las distancias temporales de la historia cultural de la humanidad, pero también centrada, habitualmente, en un sola tradición de referencia.
Buscando, entre otras cosas, superar el círculo hermenéutico creado por los límites de una sola cultura, la hermenéutica diatópica intenta “poner en contacto horizontes humanos radicalmente diferentes”, tradiciones o lugares culturales (tópoi) diferentes, para lograr un verdadero diálogo dialógico que tenga en cuenta las diferentes culturas: es el arte de llegar a una comprensión “a través de esos lugares” diferentes (dia-topos). Para esto, es necesario un reencuentro entre el mythos y el logos, entre la subjetividad y la objetividad, el corazón y la mente, el pensamiento racional y el espíritu que vuela libremente, rompiendo todos los esquemas mentales rígidos (ver más adelante).
(NOTA DE la zimby: Exactamente este tipo de Hermenéutica, (Diatópica) es la Transdisciplinariedad, que corretea nerviosa entre las disciplinas, en el laberinto babeliano de la superespecialización; al principio, como una irrealizable utopía, pero ahora, al galopar sobre Google e Internet, las conexiones interdisciplinarias aparecen como hongos, tras la lluvia de otoño, la web 2.0, donde la casi total ausencia de la tímida Academia, se compensa con los cientificos anónimos, del común, que inunda Internet, y habla de la ciencia con una apertura, bastante más rara entre los académicos y así la Ciencia Global unificada, deja de ser un sueño, un reto)
A UNIVERSE OF CONSCIOUSNESS
http://www.uboeschenstein.ch/sal/awtexte/edelmann74.html (review about the book here: http://metapsychology.mentalhelp.net/poc/view_doc.php?type=book&id=384&cn=394) Gerald.M.Edelmann A UNIVERSE OF CONSCIOUSNESS How Matter becomes Imagination Basic 2000 pg.74 |
MECHANISMS OF CONSCIOUSNESS: The Darwinian Perspective Our brief review of the vast field of neurological and neurophysiological evidence in this and the previous chapter leads to the following conclusions. First, conscious processes are typically associated with distributed changes in activity in the thalamocortical system. These empirical observations suggest that underlying consciousness are distributed neural processes that, through reentrant interactions, are at once highly integrated but continually changing and thus are highly differentiated. This conclusion becomes particularly relevant when one realizes that integration and differentiation are also general properties of conscious experience, irrespective of its specific content. To understand how these phenomenological properties relate to the actual neural mechanisms that are responsible for consciousness cannot be just a matter of accumulating additional facts. It requires a robust theory - one that provides insights into the biological origins of pattern formation, perceptual categorization, memory, concepts, and values. We turn to a brief description of one such theory, a theory that we believe provides the necessary basis for understanding the key principles underlying global brain function. Formulating such a theory required us to confront several challenging questions. What kind of svstem is the functioning brain? How can its properties lead to consciousness? How can we account for its function in the face of its enormous variability. In our effort to answer these questions, we take the position that the brain is a selective, or Darwinian, system, one whose rich functiorung actually requires variability. pg 77 In his theory of natural selection, Charles Darwin provided the chief foundation of modern biology. After his return from the voyage of the Beagle, he made continuing efforts to understand how the functions performed by the brain arose during evolution. His notebooks reveal his struggle to explain how perception, memory, and language could have arisen by what he called descent. We now have a rich evolutionary theory graced by the Darwinian perspective, but the problem of understanding mental processes is still with us. It remains for neuroscience to complete Darwin's program. In this part, we show how Darwinian principles embedded in a theory of brain function provide insights into the processes of perception, memory, and the assignment of value, all of which are critical to an understanding of consciousness. Once the reader grasps the nature of such processes, the stage will be set to consider the actual neural mechanisms by which consciousness arises during evolution and development. Our efforts here are focussed on consciousness, the ability to construct an integrated mental scene in the present that does not require language or a true sense of self. We believe that this integrated mental scene depends not only on the perceptual categorization of incoming sensory stimuli�the present�but, most important, on their interaction with categorical memories�the past. In other words, this integrated mental scene is a "remembered present." The main means by which the scene is constructed is through reentrant interactions among groups of neurons distributed in the thalamocortical sys-tem. As we show, these are just the kinds of interactions responsible for the integration and differentiation that we discussed in chapter 6. Selectionism In considering the origin of species, Charles Darwin made a great contribution that centered on population thinking: the idea that variation or diversity among individuals in a population provides a basis for competition during natural selec-tion. Natural selection is reflected in the differential reproduction of fitter indi-viduals in a species. Could it be that the brain follows such principles? We believe it does, and in this chapter we briefly review some aspects of the theory of neuronal group selection, or Neural Darwinism. This theory embraces these selective principles and applies them to the functioning brain. Its main tenets are (1) the formation during brain development of a primary repertoire of highly variant neuronal groups tbat contribute to neuroanatomy (developmental selection), Together, the three tenets of this global brain theory provide a powerfal means for understanding the key neural interactions that contribute to consciousness. ________________________________________________________ In his later vears, Darwin disagreed strongly with Alfred Russel Wallace, the codiscoverer of natural selection, who, as a spiritualist, insisted that the brain and mind of man could not have arisen by natural selection. Wallace reasoned that savages had brains roughly the size of the brains of civilized Englishmen yet lacked mathematics and had no obvious need for abstract thought, so it was difficult for him to see how natural selection would have led to similar brain sizes in both cases. He was too thoroughgoing a natural selectionist and failed to recognize that during natural selection, there is correlative variation: A primary trait can be selected for and bring along changes that are used later for other selective events. For example, the selec-tion of enlarged brain structures for perception could be accompanied by enlargements of neighboring brain regions. At some later evolutionary epoch, these regions may become selectively advantageous for some other function, such as memory. In a letter to Wallace in the spring of 1869, Darwin said, "I hope that you have not murdered too completely your own and my child" - meaning, of course, natural selection. Aside from the faultiness of Wallace's reasoning, the accumulation of evidence since that time strongly supports Darwin's conclusions: Whatever the specialness of the human brain, there is no need to invoke spiritual forces to account for its functions. Darwinian principles of variation in populations and natural selection are sufficient, and the elements invoked by spiritualism are not required for our being conscious. Being human in mind and brain appears clearly to be the result of an evolutionary process. The anthropolog-ical evidence emerging for the evolutionary origin of consciousness in humans further substantiates the notion that Darwin's is the most ideologi-cally significant of all grand scientific theories. Darwinian principles turn out to be important even for a basic understanding of brain functions, especially given the enormous variation in the structure and function of individual vertebrate brains. As we have discussed, no two brains are alike, and each individual's brain is continually changing. Variations extend over all levels of brain organization, from biochemistry to gross morphology, and the strengths of myriad individual synapses are con-stantly altered by experience. The extent of this enormous variability argues strongly against the notion that the brain is organized like a computer with fixed codes and registers. Moreover, the environment or world from which signals are delivered to the brain is not organized to give an unambiguous message like a piece of computer tape. There is no judge in nature giving out specific pronouncements on the brain's potential or actual patterns and there is no homunculus inside the head deciding which pattern should be chosen and interpreted. These facts are incompatible with the notion that the brain operates according to an unambiguous set of algorithms or instructions, like a computer. Instructionism, the idea that the environment can reliably provide the kind of information required by a computer, fails as a principle of brain operation. Yet in a given species, individual animals show certain consistent behaviors within the broad spread of individual responses. How does the brain give rise to such responses? What principles govern its global operations? To answer these questions, we need a global brain theory, one that sets out the principles governing the operation of vast and diverse neural networks. Of course, the principles of such a theory must be consistent with our observations of the neural processes necessary for con-sciousness. THE THEORY OF NEURONAL GROUP SELECTION We have repeatedly stressed that one of the most striking features of each brain is its individuality and variability. This variability occurs at all levels of brain organization, and it is so great that it cannot be dismissed as mere noise or ignored while pursuing a mechanical theory of brain action. As we shall see, this variability provides a key basis for the differentiation and diversity of conscious states. The existence of this enormous diversity and individuality, seen in the multilayered structures and dynamics of each brain, poses a major challenge to any theory that is proposed to account for global brain function. We believe that this challenge can be met by turning to population thinking, which Darwin invented. Population thinking centers on the idea that variations among individuals of a species provide the basis for natural selection in the struggle for existence that eventually leads to the ori-gin of other species. Although Darwin did not have a correct picture of genetics, he understood that different individuals inherit different traits. Certain individuals would have greater fitness as the environment changed or new environwents were occupied. These individuals would, over several generations, leave more progeny than would be able to utilize resources in the competition for survival and reproduction. Natural selection would thus effectively lead to differential reproduction of those individuals who, on the average, had higher fitness. This population principle has deep ramifications: It not only provides the basis for the origin of species, but it governs processes of somatic selection occurring in individual lifetimes. When we say somatic selection, we mean what occurs in a single body in time frames ranging from fractions of seconds to years and, obviously, ending vith an animal's death. Thus, selection and variation can also occur in the cellular systems of ani-mals. A well-analyzed example of somatic selection is provided by the immune system. In animals with backbones, there is an extraordinary cellular system capable of distinguishing foreign molecules or bacteria, viruses, and even another person's skin from the molecules of an individual body (or soma). The recognition is carried out by a set of remarkable proteins, called antibodies, that are made by circulatory blood cells. Antibodies have special sites that match or bind portions of other molecules, almost the way a cookie cutter matches a cookie of a given shape. What is remarkable is that practically any foreign molecule or antigen injected into the body vvill elicit the production of a complementary antibody that is essential for subsequent immune defense. The original theory to account for the complementary fit between the antigen and the antibody was an "instructive" one: The antibody folded around the antigen's shape and kept the appropriately shaped fold. This theory turned out to be incorrect. Instead, the immune system works by somatic selection. The basis for molecular recognition of an enormous number of dif-ferent foreign molecules is somatic variation in the antibody genes of each individual that leads to the production of a vast repertoire of antibodies, each with a different binding site. Exposure of the enormous repertoire of different antibodies to a foreign molecule is followed bv the selection and growth of the cells bearing just those antibodies that fit the foreign chemical structure of a given antigen sufficiently well, even a structure that never occurred before in the history of the Earth. Although the mechanisms and timing of selective events obviously differ in evolution and immunity, the principles are the same�the Darwinian processes of variation and selection. Over two decades ago, one of us began to think about how the mind could arise in evolution and development. It seemed that the mind must have arisen as result of two processes of selection: natural selection and somatic selection. The first process is hardly doubted except perhaps by some philosophers and theologians. Thinking about the second led to the proposal of a theory based on selective principles and concerned with the evolution, development, structure, and function of the brain. It is worth reviewing here not only because one of its main tenets (reentry) is central to the origin of consciousness, but because its way of dealing with variability in the brain is essential to understanding the complexity of conscious processes. This theory of neuronal group selection (TNGS), or Neural Darwinism, has three main tenets that are illustrated in figure 7.2: 1. Developmental selection. During the early development of individuals in a species, formation of the initial anatomy of the brain is certainly constrained by genes and inheritance. But from early embryonic stages onward, the con-nectivity at the level of synapses is established, to a large extent, by somatic selection during each individual's ongoing development. For example, dur-ing development, neurons extend myriads of branching processes in many directions. This branching generates extensive variability in the connection patterns of that individual and creates an immense and diverse repertoire of neural circuits. Then, neurons strengthen and weaken their connections according to their individual patterns of electrical activity: Neurons that fire together, wire together. As a result, neurons in a group are more closely con-nected to each other than to neurons in other groups. 2. Experiential selection. Overlapping this early period and extending throughout life, a process of synaptic selection occurs within the repertoires of neuronal groups as a result of behavioral experience. It is known, for example, that maps of the brain corresponding to tactile inputs from the fin-gers can change their boundaries, depending on how much different fingers are used. These changes occur because certain synapses within and between groups of locally coupled neurons are strengthened and others are weakened without changes in the anatomv. This selectional process is constrained by brain signals that arise as a result of the activity of diffusely projecting value systems, a constraint that is continually modified by successful output. 3. Reentry. The correlation of selective events across the various maps of the brain occurs as a result of the dynamic process of reentry. Reentry allows an animal with a variable and uniquely individual nervous system to partition an unlabeled world into objects and events in the absence of a homunculus or computer program. As we have already discussed, reentry leads to the synchronization of the activity of neuronal groups in different brain maps, binding them into circuits capable of temporally coherent output. Reentry is thus the central mechanism by which the spatiotemporal coordination of diverse sensory and motor events takes place. The first two tenets, developmental and experiential selection, provide the bases for the great variability and differentiation of distributed neural states that accompany consciousness. The third tenet, reentry, allows for the integration of those states. It is particularlv important to understand the central role played by reentry in our efforts to build a consciousness model, and it therefore requires some further elaboration. The number of possible geometric and topological patterns possible in such a system is enormous. If we consider the combinatorial possibilities for reen-trant selection across such patterns, even after allowing a number of neuro-anatomical constraints to operate, we begin to glimpse the remarkable power of neuroanatomy in a selectional system. A jungle or food web, like the brain, has many levels and routes for the passage of signals but has noth-ing corresponding to reentrant neuroanatomv. Indeed, if asked, What char-acteristic uniquely differentiates higher brains from all other known objects or systems, we would sav "reentrant organization." Note that while complex wide-area computer networks are beginning to share some properties with reentrant systems, such networks rely fundamentally on codes and, unlike brain networks, they are instructional, not selectional. It is important to emphasize that reentry is not feedback. Feedback occurs along a single fixed loop made of reciprocal connections using previous instructionally derived information for control and correction, such as an error signal. In contrast, reentry occurs in selectional systems across multiple paral-lel paths where information is not prespecified. Like feedback, however, reen-try can be local (within a map) or global (among maps and whole regions). Reentry carries out several major functions. For example, it can account for our ability to discern a shape in a display of moving dots, based on inter-actions between brain areas for visual movement and shape.5 Thus, reentry can lead to the construction of new response properties. It can also mediate the synthesis of brain functions by connecting one submodality, such as color, to another, such as motion. It can also resolve conflicts among com-peting neural signals. Reentry also ensures that changes in the effficacy of synapses in one area are affected by the activation patterns of distant areas, thereby making local synaptic changes context-dependent. Finally, by assuring the spatiotemporal correlation of neuronal firing, reentry is the main mechanism of neural integration. Since the initial formulation of the TN'GS, considerable evidence to support the theory has accumulated. Moreover, certain aspects of the theory have been greatly expanded. One of these aspects relates to the issue of degeneracy�the ability of structurally different variants of brain elements to produce the same function. Another important aspect of the theory is related to the notion of value, which we touched on briefly in chapter 4 in our discussion of diffusely projecting value systems. We consider each of these aspects in turn. DEGENERACY All selectional systems share a remarkable property that is as unique as it is essential to their functioning: In such systems, there are typically many dif-ferent ways, not necessarily strurturally identical, by which a particular output occurs. We call this property degeneracy. Degeneracy is seen in quantum mechanics in certain solutions of the Schrödinger equation and in the genetic code, where, because of the degenerate third position in triplet code words, many different DNA sequences can specify the same protein. Put briefly, degeneracy is reflected in the capacity of structurally different components to yield similar outputs or results. In a selectional nervous system, with its enormous repertoire of variant neural circuits even within one brain area, degeneracy is inevitable. Without it, a selectional system, no matter how rich its diversity would rapidly fail - in a species, almost all mutations would be lethal; in an immune system, too few antibody variants would work; and in the brain, if only one network path was available, signal trafffic would fail. Degeneracy can operate at one level of organization or across many. It is seen in gene networks, in the immune system, in the brain, and in evolution itself. For example, combinations of different genes can lead to the same structure, antibodies with different structures can recognize the same foreign molecule equally well, and different living forms can evolve to be equally well adapted to a specific environment. There are countless examples of degeneracy in the brain. The complex meshwork of connections in the thalamocortical system assures that a large number of different neuronal groups can similarly affect, in one way or another, the output of a given subset of neurons. For example, a large num-ber of different brain circuits can lead to the same motor output or action. Localized brain lesions often reveal alternative pathways that are capable of generating similar behaviors. Therefore, a manifest consequence of degeneracy in the nervous system is that certain neurological lesions may often appear to have little effect, at least within a familiar environment. Evolutionary selective pressure is typically applied to individuals at the end of a long series of com-plex events. These events involve many interacting elements at multiple temporal and spatial scales, and it is unlikely that well-defined functions can be neatly assigned to independent subsets of elements or processes in bio-logical networks. For example, if selection occurs for our ability to walk in a particular way, connections within and among many different brain structures and to the muscoloskeletal apparatus are all likely to be modified over time. While locomotion will be affected, many other functions, including our ability to stand or jump, will also be influenced as a result of the degen-eracy of neural circuits. The ability of natural selection to give rise to a large number of nonidentical structures yielding similar functions increases both the robustness of biological networks and their adaptability to unforeseen environments. VALUE As powerful as it is in providing alternative pathways for a given function, degeneracy cannot provide constraints for a selectional system; indeed, it is a relaxation of constraints. Given that this is so, how can a selectional system achieve its goals without specific instructions? It turns out that the necessarv constraints or values are provided bv a series of diverse phenotypic struc-tures and neural circuits that have been selected during evolutionary time. We define values as phenotypic aspects of an organism that were selected during evolution and constrain somatic selective events, such as the synaptic changes that occur during brain development and experience. For example, the mere fact of having a hand with a certain shape and a certain propensity to grasp in one way and not in another enormously enhances the selection of synapses and of neural patterns of activity that lead to appropriate actions. The same actions would be almost impossible to synthesize or program from scratch, as experts in robotics know all too well. Another example is seen in the many reflexes with which newborn babies are endowed. These are not the only contributors to value, however. The diverse morphological characteristics (such as those of sensory organs and the motor apparatus) that link the parts and organs of the body to various brain functions are further examples. Hormonal loops can be prime contributors, but so can the way limbs are jointed in different vertebrate species. Values thus provide a basis for the development and refinement of brain-based categorization and action within a species. It is important to stress that value is not identical to category. Value is only a precondition for arriving at a perceptual or behavioral response. Such a categorical response depends on the actual occurrence of selection. Perceptual categorization usually emerges as a result of selection during actual behavior in the real world. In general, although value shapes catego-rization in accord with evolution, it cannot convey or preserve the details of a real-world event. For example, value may be necessary for orienting the eyes of a baby toward a light source, but may not be sufficient for the recognition of different objects. There are two limits to the concept of value as so far described. First, even a conglomerate of morphologically based values handed down in the phenotype (such as opposed thumbs and different kinds of joints) may not be specific enough to guide neural behavior (perceptual categorization, for example). The second limit is that evolutionarily defined, fixed value para-meters may, by themselves, be too rigid to guide sufficiently rich behavior when an animal is confronted vith unforeseen demands of the environment. The first limit appears to have been transcended bv the evolution of the special brain centers. In higher vertebrates, a series of diffusely projecting neural value systems appear to have evolved that are capable of continually signaling to neurons and synapses all over the brain. Such signals carry information about the ongoing behavioral state of the organism (sleep, waking,exploration,grooming, and the like), as well as the sudden occurence of events that are salient for the entire organism (including, for example, novel stimuli, painful stimuli, and rewards). These systems, whose importance vastly outweighs the proportion of brain space they occupy, include the noradrenergic, serotoninergic, cholinergic, dopaminergic, and histaminer-gic cell nuclei (see figure 4.4C). FIGURE 7.3 DIAGRAM OF A VALUE SYSTEM. The noradrenergic system originating in the locus coeruleus projects diffusely to the entire brain and releases the neuromodulator noradrenaline. Neurons within some of the nuclei of value systems fire in a continnous or tonic manner when an animal is awake and stop firing when the animal falls asleep. Moreover, neurons belonging to value systems often produce a sudden burst of firing whenever something important or salient occurs to the animal. For example, neurons in the locus coeruleus fire whenever an animal enters a novel environment or something unexpected happens. When they fire, they release a neuromodulator�in this case, noradrena-line�over most, if not all, brain regions. Noradrenaline and neuromodula-tors that are released by different value systems can thus modify the activity of a large number of target neurons. They can also alter the probability that the strengthening or weakening of synapses will occur in response to neural activity.9 In this way, value systems are perfectly poised to signal the occur-rence of important events to the entire brain. The importance of value systems for the functioning of a selectional brain has been demonstrated in a set of syntheticallv modeled artifacts that are capable of real-world behavior. For example, in one such artifact, Darwin IV a value system was required to allow a system controlling eye movements to track randomlv moving targets. This value system reflected the inherited bias that "light is better than darkness" by firing whenever a spot of light hits the center of the eye, at which point a simulated modulating substance was released. This substance decayed over time, but, at suffficiently high levels, it led to the selective strengthening of synapses. W~th this value system in place, the simulated eye came to track objects after a certain number of trials. Of course, the system would also have responded as well in low light conditions if the value, "darkness is bet-ter than light" was used instead. In the appropriate nighttime environment, bats, with their sonarlike system, are as effective as eagles are in daylight or more so. In both cases, value systems are essential. The second potential limit to the concept of value�too rigid a set of evolutionarily derived value constraints, leading to a pinched repertoire of stereotyped responses in a selectional system�can be met by evolving modi-fiable value systems. We predict, for example, that connections will be found that allow the responses of the ascending value systems themselves to be modified during learning experiences. A recent computer simulation that contrasts fixed and modifiable value systems has been used to test the effects of altering value constraints by learning. The introduction of a modifiable value system in this model led to rich behavior and allowed higher-order conditioning of that behavior that was not possible under a rigid inherited value constraint.l' An intriguing possibility is that the various value systems of the brain work together to affect brain action by interacting combinatorially, releasing various proportions of their different neuromodulators at the same time. For example, it is well known that during active waking, the noradrenergic, sero-toninergic, and cholinergic systems are firing together. During slow-wave sleep, these three systems reduce their discharge, while during REM sleep, the noradrenergic and serotoninergic systems shut off completely, as the cholinergic system resumes its firing. Different combinations of the corresponding neuromodulators in vast areas of the brain are certainly responsi-ble for many differences among behavioral states in the responses to external stimuli, learning and memory, emotion, and cognition. The possibilities are numerous but have so far not been explored. It is but a small step to realize that much more sophisticated interactions among value systems related to pleasure, pain, bodily states, and various emotions are possible and are likely to govern cortical responses. The effects of value-dependent learning can range from alignment of auditory and visual maps in the brain stem of the barn owl to the exquisite distinctions made by a connoisseur of wine or the emotional responses of a guilty person. Valne and emotions, pleasant and unpleasant, are obviously tightly coupled and are central to conscious experience.' Value is a sign of nested selective systems—a result of natural selection that yields alterations of the phenotype that can then serve as constraints on the somatic selection occurring in an individual's nervous system. Unlike evolu-tion, somatic selection can deal wich the contingencies of immediate envi-ronments that are rich and unpredictable—even ones that have never occurred before—by enabling an individual animal to categorize critical fea-tures of these environments during short periods. But we again emphasize that neuronal group selection can consistently accomplish this categorization only under the constraint of inherited values determined by evolution. The nest of systems is a beautiful one, guaranteeing survival for each species in terms of what may be called its necessary prejudice—one required for sur-vival under behavioral control by a selectional brain. As we shall see, the existence of such arrangements is essential for the operation of various forms of memory found in selectional systems - forms that are essential for the evolution of consciousness. When we complete our discussion of memory, we will show how a conscious scene may be built by interactions of memory systems constrained by valne with systems carrying out perceptual categorization. - |
jueves, 17 de noviembre de 2011
La Universidad y la Globalización Alternativa
Renovar a teoria crítica e Reinventar a emancipação social
http://www.movimiento.org/group/8voencuentroanualrsdbahiabrasil/forum/topics/epistemologia-del-sur?commentId=2358986%3AComment%3A58867&groupId=2358986%3AGroup%3A54999 (verR SEGUNDO ENLACE)
BBoaventura de Sousa Santos é um cientista social português, doutor em sociologia do direito, professor na Universidade de Coimbra e um dos idealizadores do Fórum Social Mundial.
A emancipação social é um conceito central na modernidade ocidental e está organizada por meio de uma tensão entre regulação e emancipação, entre experiências muitas vezes desiguais ou opressoras e a expectativa de uma vida melhor.
A discrepância entre experiência e expectativa está invertida: as expectativas para a grande maioria da população não são mais positivas que as experiências correntes.
(20 anos atrás qdo os jornais diziam “reforma na saúde” era para melhor. Hoje qdo vemos essa notícia possivelmente a reforma será para pior).
Os instrumentos que regulam a discrepância entre expectativa e experiência, entre regulação e emancipação estão hoje em crise. Isso dá ao nosso tempo um caráter de transição. Nesse sentido é necessário reinventar a emancipação social.
As grandes teorias das ciências sociais foram produzidas em 3 ou 4 países do norte e, não se ajustam as realidades sociais do sul. E, as grandes organizações e instituições internacionais olham o mundo a partir dessas teorias e reproduzem as desigualdades entre norte e sul.
Boaventura reuniu cientistas sociais do sul (países periféricos e semi periféricos do sistema mundial) p/ permitir uma organização fora dos centros hegemônicos p/ realizar um projeto que se chamou “Reinventar a emancipação social do sul”. O projeto reuniu 6 países, Portugal, Colombia, Brasil, África do Sul, Moçambique e Índia com cerca de 70 pesquisadores sociais. O projeto tentou ver quais as contradições mais persistentes entre o norte e o sul.
O 1º tema foi a democracia, o 2º a produção não capitalista, economia solidária, economia popular, etc., o 3º multiculturalismo, diversidade cultural, cidadania cultural, etc., o 4º conhecimentos rivais ou seja a negação da validade ou mesmo da existência dos conhecimentos alternativos aos conhecimentos científicos ( = conhecimentos populares, indígenas, etc), o 5º internacionalismo operário, estão emergindo muitas iniciativas sul/sul de articulação.
A dificuldade de desenvolver um projeto como esse é a grande dependência que temos de autores dos centros hegemônicos, portanto sem foco para nossa realidade e,as diferenças culturais. Por ex., na Índia a sociologia convive com o hinduísmo como aqui convivemos com pressupostos da cultura ocidental e na África com culturas africanas. Não há, no sul, grandes teorias comuns, há um contato cultura de produção de ciência. Isso é importante já que a ciência é independente da cultura.
Isso mostrou as diferentes maneiras, nesses países, de entender a sociologia, a sociedade e o mundo. Então, Boaventura começa a refletir sobre o desperdício das experiências porque ocorrem em lugares fora do centro hegemônico. O desafio passa a ser o de reinventar as ciências sociais. Com efeito, não é um problema das ciências sociais mas de uma racionalidade subjacente a ela, a racionalidade que domina o norte e sua grande influência. A essa racionalidade chamou de razão indolente ou preguiçosa. Racionalidade que se considera única, que não se exercita o suficiente, que tem um conceito restrito de totalidade. Tem uma visão de presente dicotômica e hierárquica e por isso não consegue pensar para fora das totalidades. Por ex. é pensar no sul sem a relação com o norte, na mulher não em relação com o homem, no empregado sem o patrão. Para combater essa razão propõe utilizar a sociologia das ausências.
Seria um procedimento para tentar mostrar que o que não existe é produzido ativamente como não-existente, como alternativa não-crível.
Apresenta maneiras: combater a idéia de que o único saber que tem rigor é o saber científico e outros saberes não tem validade. Chama a isso monocultura do saber que cria inexistências através da ignorância.
A 2ª idéia é debater o que chama de monocultura do tempo linear que é a idéia de uma direção na qual os países desenvolvidos estão na dianteira porque são mais progressistas do que o que existe nos países subdesenvolvidos. É a idéia de um tempo linear no qual os mais avançados estão na dianteira e os países assimétricos com o tempo dos países desenvolvidos são considerados atrasados.
A 3ª monocultura é a de naturalização das diferenças. Aqui a hierarquia não é a causa das diferenças mas sua conseqüência, porque os que são inferiores nessas classificações o são “por natureza” e por isso a hierarquia é uma conseqüência de sua inferioridade (classificação racial, étnica, sexual, etc.). É não saber pensar diferenças com igualdade e isso desqualifica tornando inferior.
A 4ª monocultura é a dominante. Na tradição ocidental primeiro foi o universalismo e agora a globalização. Aqui a realidade local não tem dignidade como alternativa consistente a uma realidade global que é hegemônica.
A última monocultura é a do produtivismo capitalista. A idéia de que o crescimento econômico e a produtividade mensurada em um ciclo de produção, determina a produtividade humana ou da natureza. Por ex. para os camponeses ou indígenas a produtividade da terra não é definida em um único ciclo de produção mas em vários.
Quando nasceram os produtos químicos na agricultura, a terra passou a ser produtiva em um ciclo de produção, porque os fertilizantes mudaram o conceito de produtividade da natureza e tudo o que não é produtivo nesse contexto é considerado improdutivo. Assim se produz ausência com “improdutividade”.
Se quisermos inverter essa lógica por meio da sociologia das ausências temos que fazer que está ausente esteja presente. Que experiências que existem mas são invisíveis estejam disponíveis. A maneira como procede a sociologia das ausências é substituir as monoculturas em ecologias. Boaventura propõe 5 ecologias.
1ª Ecologia dos Saberes. Não se trata descredibilizar as ciências, não é anti-ciência e sim fazer um uso contra-hegemônico. E a ciência entra como parte da ecologia mais ampla de saberes e o saber científico e do norte possam dialogar com o saber laico, popular, indígena, urbano marginal, etc. O importante não é ver como o conhecimento representa o real, mas conhecer o que determinado conhecimento produz na realidade. Qual tipo de intervenção um dado saber produz.
O melhor conhecimento para levar o homem a lua é cientifico ao mesmo tempo que para preservar a biodiversidade, o melhor caminho é o indígena (não por acaso 80% da biodiversidade se encontra em territórios indígenas).
A 2ª é a Sociologia das Temporalidades. Há um tempo linear assim como outros tempos. É preciso deixar que cada forma de sociabilidade tenha sua própria temporalidade. O camponês africano ou latino americano pode se encontrar com o executivo do Banco Mundial: isso é considerado um encontro simultâneo mas não contemporâneo porque o camponês é local e o executivo global. O importante aqui é reconhecer que o camponês é, a sua maneira, contemporâneo e eliminar o conceito de residualidade.
A 3ª é a Ecologia do Reconhecimento. Trata-se de descolonizar nossas mentes e aceitar as diferenças que restam depois que as hierarquias forem descartadas ou problematizadas. Ver o que não está conectado com hierarquia.
A 4ª é a Ecologia da Transescala. É a possibilidade de articular as escalas locais, nacionais e globais.
E finalmente a Ecologia das Produtividades. Consiste na recuperação e valorização dos sistemas alternativos de produção, das organizações econômicas populares, das empresas autogestionadas, da economia solidária, etc.
As ecologias vão permitir dilatar o presente com muitas experiências que nos são relevantes. Substituir um infinito que é hegemônico e vazio, como dizia Walter Benjamin, por um futuro concreto, de utopias realistas, suficientemente utópicas para desafiar a realidade que existe, mas realistas para não serem descartadas facilmente.
A crítica à razão que já sabe qual é o futuro baseado no progresso, no desenvolvimento e no crescimento econômico é feita pela Sociologia das Emergências. É tentar ver os sinais e latências, possibilidades que existem no presente e que são sinais de futuro, que são possibilidades emergentes e que são descredibilizadas porque são embrionárias.
É não trabalhar somente com indicadores e também com sinais de futuro. É um exercício de ampliação simbólica de uma ação coletiva, por ex. Sem romantismo é tornar presente experiências produzidas como ausentes. Significa produzir possíveis que já existem como emergência. Não se trata de abstração, trata-se de considerar iniciativas que já estão acontecendo concretamente.
O problema é que a sociologia das ausências e a sociologia das emergências vão fazer emergir uma enorme quantidade de realidades. Vamos nos confrontar com uma realidade mais rica, como também mais fragmentada e mais caótica. Como encontrar sentido em tudo isso? Uma resposta simples seria: vamos criar a teoria geral de todas essas experiências. E isso não é possível e nem desejável, mas precisamos de uma teoria sobre a impossibilidade de uma teoria geral. É a criação de uma outra maneira de entender, outra maneira de articular conhecimentos e práticas e sujeitos coletivos. É necessário criar inteligibilidade recíproca no interior da pluralidade. A proposta de Boaventura é um procedimento de tradução.
A tradução é um processo intercultural, intersocial. É a busca da inteligibilidade sem canibalização, sem homogeneização. Ver o que há de comum entre movimentos, onde estão as semelhanças. Esse é o princípio fundamental da Epistemologia do Sul, que se baseia na idéia central de que não há justiça social global sem justiça cognitiva global, ou seja, sem justiça entre os conhecimentos. É preciso uma nova forma de relacionar conhecimentos e o que ele propõe é a tradução, examinando relatividade e incompletude. É tradução recíproca. É um exercício de imaginação epistemológica e democrática.
Resumo do cap. A Sociologia das Ausências e a Sociologia das Emergências para uma Ecologia dos Saberes do livro Renovar a Teoria Crítica e Reinventar a Emancipação Social de Boaventura de Sousa Santos
Por uma geografia das redes de Milton Santos. Geógrafo baiano que estudou o desenvolvimento urbano nos países subdesenvolvidos. Fez uma abordagem crítica pioneira ao processo de globalização atual. Inovou o conceito de espaço ao falar da força do lugar por sua dimensão humana. Assim como Boaventura, crê no papel dos países subdesenvolvidos para uma mudança histórica.